翻訳と辞書
Words near each other
・ INSC
・ Inscape
・ Inscape (disambiguation)
・ Inscape (publisher)
・ Inscape (visual art)
・ Inscape Design College
・ Inscentinel
・ Insch
・ Insch Primary School
・ Insch railway station
・ Insch War Memorial Hospital
・ Insco Apartments Building
・ Inscribed angle
・ Inscribed figure
・ Inscribed polygon
Inscribed sphere
・ Inscribed square problem
・ Inscribed wrasse
・ InScript (JavaScript engine)
・ InScript keyboard
・ Inscription of Abercius
・ Inscription of Župa Dubrovačka
・ Inscription Rock
・ Inscriptional Pahlavi (Unicode block)
・ Inscriptional Parthian (Unicode block)
・ Inscriptiones Graecae
・ Inscriptiones Latinae Selectae
・ Inscriptions of Aphrodisias
・ Inscriptions of Upper Moesia
・ Inscrutability of reference


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Inscribed sphere : ウィキペディア英語版
Inscribed sphere
In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and is dual to the dual polyhedron's circumsphere.
All regular polyhedra have inscribed spheres, but most irregular polyhedra do not have all facets tangent to a common sphere, although it is still possible to define the largest contained sphere for such shapes. For such cases, the notion of an insphere does not seem to have been properly defined and various interpretations of an ''insphere'' are to be found:
* The sphere tangent to all faces (if one exists).
* The sphere tangent to all face planes (if one exists).
* The sphere tangent to a given set of faces (if one exists).
* The largest sphere that can fit inside the polyhedron.
Often these spheres coincide, leading to confusion as to exactly what properties define the insphere for polyhedra where they do not coincide.
For example the regular small stellated dodecahedron has a sphere tangent to all faces, while a larger sphere can still be fitted inside the polyhedron. Which is the insphere? Important authorities such as Coxeter or Cundy & Rollett are clear enough that the face-tangent sphere is the insphere. Again, such authorities agree that the Archimedean polyhedra (having regular faces and equivalent vertices) have no inspheres while the Archimedean dual or Catalan polyhedra do have inspheres. But many authors fail to respect such distinctions and assume other definitions for the 'inspheres' of their polyhedra.
The radius of the sphere inscribed in a polyhedron ''P'' is called the inradius of ''P''.
== See also ==

* Circumscribed sphere
* Midsphere
* Inscribed circle

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Inscribed sphere」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.